Error loading page.
Try refreshing the page. If that doesn't work, there may be a network issue, and you can use our self test page to see what's preventing the page from loading.
Learn more about possible network issues or contact support for more help.

PyTorch深度学习

Chinese Edition

ebook
1 of 1 copy available
1 of 1 copy available
使用PyTorch开发神经网络的实用指南 提供本书彩图和源代码下载

Key Features
  • 使用PyTorch构建神经网络模型的实用指南
  • 从PyTorch的安装讲起,介绍为现代深度学习提供驱动力的多个基础模块,以及使用CNN、RNN、LSTM以及其他网络模型解决问题的方法
  • Book Description深度学习为世界上的智能系统(比如Google Voice、Siri和Alexa)提供了动力。随着硬件(如GPU)和软件框架(如PyTorch、Keras、TensorFlow和CNTK)的进步以及大数据的可用性,人们在文本、视觉和高级分析等领域更容易实施相应问题的解决方案。 本书对当今前沿的深度学习库PyTorch进行了讲解。凭借其易学习性、高效性以及与Python开发的天然亲近性,PyTorch获得了深度学习研究人员以及数据科学家们的关注。本书从PyTorch的安装讲起,然后介绍了为现代深度学习提供驱动力的多个基础模块,还介绍了使用CNN、RNN、LSTM以及其他网络模型解决问题的方法。本书对多个先进的深度学习架构的概念(比如ResNet、DenseNet、Inception和Seq2Seq)进行了阐述,但没有深挖其背后的数学细节。与GPU计算相关的知识、使用PyTorch训练模型的方法,以及用来生成文本和图像的复杂神经网络(如生成网络),也在本书中有所涵盖。 学完本书后,读者可以使用PyTorch轻松开发深度学习应用程序。What you will learn
  • 在GPU加速的张量计算中使用PyTorch;
  • 为图像自行创建数据集和数据装载器,然后使用torchvision和torchtext测试模型;
  • 使用PyTorch来实现CNN架构,从而构建图像分类器;
  • 使用RNN、LSTM和GRU开发能进行文本分类和语言建模的系统;
  • 学习高级的CCN架构(比如ResNet、Inception、DenseNet等),并将其应用在迁移学习中;
  • 学习如何混合多个模型,从而生成一个强大的集成模型;
  • 使用GAN生成新图像,并使用风格迁移生成艺术图像。
  • Who this book is for

    本书适合对深度学习感兴趣,且希望一探PyTorch究竟的人员阅读;具有其他深度学习框架使用经验的读者,也可以通过本书掌握PyTorch的用法。

    ]]>

    Formats

    • OverDrive Read
    • EPUB ebook

    Languages

    • Chinese

    Loading